.

        IMA

World’s first 3D-printed FRP footbridge paves way for circular composites

World’s first 3D-printed FRP footbridge paves way for circular composites

The world’s first lightweight 3D printed fibre reinforced polymer (FRP) footbridge will be installed at Kralingse Bos park – the green heart of Rotterdam – by the end of this year.

Dutch chemical firm DSM is working with the city of Rotterdam to collaborate in the design and build of the circular composite footbridge utilising its Arnite fibre-reinforced thermoplastic. DSM says it will be developed strictly in line with the standards of safety for FRP bridge design.

Sensors could also be included into the footbridge to build a digital twin of the bridge. The sensors can predict and optimise maintenance, ensuring safety and extend the life span of the bridge. It is estimated the footbridge will be installed and in use by the end of 2020.

Mozafar Said, Asset Manager from the City of Rotterdam, said: “The city of Rotterdam is proud to be a leader in the smart and circular use of composite bridges. Together with Royal HaskoningDHV and DSM, we are continuing to push the frontiers of sustainability for bridges, using thermoplastics which will enable greater circularity.

“The 3D printed FRP footbridge as a circular composite aligns with our city’s ambitious sustainability targets to reduce carbon footprint and promote liveability and we are proud to be the first city to test, print and install it.

“We see the use of composite bridges as a smart solution to replacing our older constructions. With more than 1,000 bridges in Rotterdam, we are constantly looking to push the boundaries to develop the next generation of bridges which will be more sustainable and circular with lower maintenance and lifecycle costs.”

According to Maurice Kardas, Business Development Manager at Royal HaskoningDHV: “We announced the prototype of this circular composite bridge in 2019 and with the vision and support of our partners DSM and the City of Rotterdam we can now take this one step further.

“Rotterdam and the Netherlands are ahead of the curve in innovation in infrastructure, particularly in the areas of sustainability and circularity. By introducing circular composites into their bridge infrastructure, Rotterdam proves once again to be a city ahead of the game. This is a step change which signifies a collective effort to bring innovation from idea to realization and ushers in a new era of sustainable design and bridge functionality.”

Patrick Duis, Senior Application Development Specialist Additive Manufacturing at DSM added: “The printed circular composite bridge enables the transition to a more sustainable and circular type of bridges with minimal wear and tear. Now that we have the new circular composite of recyclable source material along with the required performance properties available to us, we can start taking the environment-friendly design of the infrastructure to the next level.”


(IMA)


Subscribe to Get the Latest Updates from IMA  Please click here



©2020 Injection Moulding Asia. All rights reserved.